Campus eBookstore Logo

Skip Navigation LinksEBook Details

Spatial Regression Models for the Social Sciences

Spatial Regression Models for the Social Sciences
Author: Guangqing Chi; Jun Zhu
Price: $79.20
ISBN-10: 1544302061
ISBN-13: 9781544302065
Get It!:
Delivery: BibliU Reader
Duration: Lifetime

Note:
Copy Selections To Clipboard: User can copy content to the clipboard with the following restriction: Initially allowance of 2 copy selections. Another copy selection allowed every Day. To a maximum of 30 total copy selections.
Printing Pages: User can print pages with the following restriction: Initially allowance of 2 pages. Another page allowed every Day. To a maximum of 30 total pages.

Description

Space and geography are important aspects of social science research in fields such as criminology, sociology, political science, and public health. Many social scientists are interested in the spatial clustering of various behaviors and events. There has been a rapid development of interest in regression methods for analyzing spatial data over recent years, but little available on the topic that is aimed at graduate students and advanced undergraduate classes in the social sciences (most texts are for the natural sciences, or regional science, or economics, and require a good understanding of advanced statistics and probability theory). Spatial Regression Models for the Social Sciences fills the gap, and focuses on the methods that are commonly used by social scientists. Each spatial regression method is introduced in the same way. Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it, by connecting it to social science research topics. They try to avoid mathematical formulas and symbols as much as possible. Secondly, throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us. Spatial Regression Models for the Social Sciences provides comprehensive coverage of spatial regression methods for social scientists and introduces the methods in an easy-to-follow manner.